B.Sc Computer Science with Data Science COURSE OUTCOMES (COs)

On completion of the course students will be able to

COURSE	COURSE	
COMPONENT		COURSEOUTCOME
CORE THEORY –I		CO1: Understand the significance of data, its types and the evaluation of data and also understand the key characteristics of Big Data
		CO2: Demonstrate the basic concepts of variables ,expressions and Illustrate the concept of functions and control structures
	INTRODUCTION TO DATA SCIENCE	CO3: Acquire knowledge about various special data formats and its related methods
		CO4: Analyse the characteristics of Numpy and Pandas libraries an illustrate how to load, manage, and explore data from datasets .
		CO5: Demonstrate the techniques for effective visualization and presentation of data.
CORE PRACTICAL- I		CO1: Demonstrate proficiency in handling of loops and creation of functions.
		CO2: Identify the methods to create and manipulate lists, tuples, and dictionaries and also perform string manipulations.CO3: Interpret the concepts of Object-Oriented Programming as used in Python
	DATA SCIENCE USING PYTHON LAB	
		CO4: Discover the commonly used operations involving regular expressions, file system and merging datasets. Implement aggregation and grouping operations on datasets.
CORE THEORY – II		CO1: Understand the basic concepts of Java programming and its significance of operators and control statements
	JAVA AND DATA	 CO2: Describe the fundamentals of object-oriented programming including defining classes, objects, invoking methods to create applications CO3: Acquire knowledge about interfaces, packages, multithreading and exceptions
	STRUCTURE	
		CO4: Recognize the implementation of lists, stacks ,queue and their use in algorithms

		CO5: Demonstrate the representation of trees and graph data structures
CORE PRACTICAL –II	DATA STRUCTURES USING JAVA LAB	CO1: Implement linear and non-linear data structure operations.CO2: Understand the different operations of search treesCO3: Implement graph traversal algorithm
CORE THEORY-III	RELATIONAL DATABASE MANAGEMENT SYSTEM	 CO1: Describe the concepts of database technologies, Model Entity Relationship with E-R diagrams and the classification of ER model. CO2: Be familiar with the relational database theory according to Codd's rules, and be able to write relational algebra expressions and calculus for queries. CO3: Design database schema considering normalization and relationships within database and also can summarize the transaction processing mechanisms. CO4: Be able to write SQL commands for data definition and data manipulation in query processing. CO5: Develop triggers, procedures, user defined functions, packages and design PLSQL Programs.
CORE PRACTICAL –III	PL/SQL LAB	 CO1: Implement the DDL, DML Commands and Constraints. CO2: Implement queries, sub queries and using aggregate functions to retrieve information from database. CO3: Develop PL/SQL block for exception handling, cursors, packages and triggers. CO4:Design and develop simple database applications.
CORE THEORY– IV	DATA ANALYTICS	 CO1: To introduce the concepts of Big Data and to handle missing data in the real world data sets by choosing appropriate methods. CO2: To summarize the data using basic statistics and visualize the data using basic graphs and plots. CO3:To apply exploratory techniques for understanding multivariate data by summarizing it through statistical methods and graphical methods.

		CO4: To identify the outliers if any in the data set and choose appropriate feature selection and dimensionality reduction for data pre-processing.
		CO5: To develop and evaluate model using predictive analytics and data visualization.
	DATA ANALYTICS LAB	CO1: Understand and use python data science libraries as a tool for data analytics.
CORE PRACTICAL		CO2: Create visualizations for the statistical results using python.
-IV		CO3: Handle preprocessing and the transformation of data.
		CO4: Generate regression models and correlation analysis.
	OPERATING SYSTEM	CO1: To understand the fundamental concepts of operating system and to compare the performance of Scheduling Algorithms.
		CO2: To describe the synchronization of process and the methods of handling deadlocks.
CORE THEORY-V		CO3:To recognize the memory management policies.
IIIEOKI-V		CO4: To analyze the paging replacement algorithms and free space management in file system.
		CO5: To demonstrate I/O management and system security techniques.
		CO1: To summarize the different network models.
		CO2: To describe the wireless transmission and evaluate error detection and correction methods.
CORE	COMPUTER	CO3: To explain the data link layer protocols.CO4: To analyze the routing algorithms and protocols of network layer.
THEORY-VI	NETWORKS	
		CO5: To demonstrate the services and connection management of transport layer.
CORE THEORY-VII	DATA VISUALIZATION	CO1: To conduct exploratory data analysis using Tableau Analytics Platform.
		CO2: To use knowledge of perception and cognition to evaluate visualization design alternatives.

		CO3: To apply data transformations such as aggregation and filtering for visualization.
		CO4: To design and evaluate color palettes and maps for visualization based on principles of perception.
		CO5: To use Python to develop interactive visualizations.
CORE PRACTICAL –V	DATA VISUALIZATION - LAB	 CO1:To identify the insights in data and prepare data for visualization. CO2: To create several different charts and maps using Tableau. CO3: To work with Aggregate and Logical Functions. CO4: To create ad-hoc reports, data visualizations, and dashboards using Tableau Desktop
ELECTIVE THEORY-I	NATURAL LANGUAGE PROCESSING	 CO1: To describe the fundamental concepts and techniques of natural language processing. CO2: To distinguish among the various techniques, taking into account the assumptions, strengths, and weaknesses of each. CO3: To use appropriate descriptions, visualizations, and statistics to communicate the problems and their solutions. CO4:To grasp the basic concepts of syntax and parsing techniques. CO5: To analyze large volume text data generated from a range of real-world applications.
ELECTIVE THEORY-I	MOBILE APPLICATION DEVELOPMENT FOR MACHINE LEARNING	 CO1: To understand the basic concepts of Android App Development with Machine Learning. CO2: To provide suggestions as well as recommendations for search requests. CO3:To analyze the user behavior patterns. CO4:To convert a Machine Learning model to TensorFlow Lite. CO5: To suggest apps which will reduce human interference.
ELECTIVE THEORY-I	INTRODUCTION TO REINFORCEMENT LEARNING	CO1: To understand basic exploration methods and the exploration/exploitation tradeoffCO2: To analyze the statistical learning techniques where an agent explicitly takes actions and interacts with the world.

	CO3: To explain the importance and challenges of learning agents that make decisions.
	CO4: To summarize the value functions, as a general-purpose tool for optimal decision-making.
	CO5: To implement dynamic programming as an efficient solution approach to an industrial control problem.
	CO1: To describe the concepts of morphology, syntax, semantics, discourse & pragmatics of natural language.
NATURAL LANGUAGE PROCESSING LAB	CO2: To demonstrate understanding of the relationship between NLP and statistics & machine learning.
	CO3: To discover various linguistic and statistical features relevant to the basic NLP task, namely, spelling correction, morphological analysis, parts-of-speech tagging, parsing and semantic analysis.
	CO4: To develop systems for various NLP problems with moderate complexity.
	CO1: To develop components and different layout for mobile application development framework for android.
MOBILE APPLICATION DEVELOPMENT FOR MACHINE LEARNING - LAB	CO2: To develop simple GUI application with the use of Built in components and widgets.
	CO3: To create databases to store application data locally.
	CO4: To test and show the results on emulators or on physical handheld devices.
	CO1: To solve basic and advanced reinforcement learning techniques.
REINFORCEMENT	CO2: To identify and apply suitable learning techniques for different problem situations.CO3: To implement different algorithms for decision problems.
LEARNING - LAB	
	CO4: To evaluate and set up computational experiments.
CLOUD COMPUTING	CO1: To understand the basic concepts in Cloud Computing.
	CO2: To explore the architecture of Cloud Computing.
	CO3: To explain and apply levels of services of Cloud.
	LANGUAGE PROCESSING LAB MOBILE APPLICATION DEVELOPMENT FOR MACHINE LEARNING - LAB

		CO4: To describe the security aspects in the cloud.
		CO5: To summarize the applications of cloud computing.
		CO1: To explain the concepts and the use of Devices, Gateways and Data Management in IoT.
		CO2: To determine the market perspective and the vision of IoT from a global context.
CORE THEORY-IX	INTERNET OF THINGS	CO3: To describe the reference model and architecture of IoT.
		CO4: To design IoT applications in different domain and analyze their performance.
		CO5: To implement basic IoT applications on embedded platforms.
		CO1: To explain the basic concepts of machine learning.
	MACHINE LEARNING	CO2: To implement different machine learning algorithm techniques
CORE THEORY-X		. CO3: To apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
		CO4: To apply appropriate data sets to the Machine Learning algorithms.
		CO5: To identify and evaluate models generated from data.
		CO1: To implement and evaluate the regression models using different algorithms.
CORE	MACHINE	CO2: To identify and implement various classification algorithms for appropriate problems.
PRACTICAL –VI	LEARNING LAB	CO3: To design and evaluate the unsupervised models through python in built functions.
		CO4: To develop the code for association rule learning.
	INFORMATION SECURITY	CO1: To acquire the knowledge of attacks, security goals in information security.
ELECTIVE THEORY-II		CO2: To test and evaluate security in systems and networks.
		CO3: To use methods for planning and designing secure systems.
		CO4: To apply techniques and tools for secure system deployment and operation.

		CO5: To perform continuous testing, assessment and updating of system security.
		CO1: To describe network security services and mechanisms.
ELECTIVE THEORY-II		 CO2: To design and develop solutions for technical issues related to networking and security problems. CO3:To identify infrastructure components including devices, topologies, protocols, systems software, management and security. CO4: To apply footprinting, scanning, enumeration and similar techniques to discover network and system vulnerabilities.
	NETWORK SECURITY	
		CO5: To understand security issues related to networking vulnerabilities, firewalls, intrusion detection systems.
		CO1: To state the basic concepts of block chain.
ELECTIVE THEORY-II		CO2: To paraphrase the list of consensus.
	BLOCK CHAIN TECHNOLOGY	CO2: To paraphrase the list of consensus.CO3: To demonstrate and interpret the working of Hyper ledger Fabric.CO4: To implement SDK composer tool.
		CO5: To explain the Digital identity for government.