B.Sc Computer Science with Artificial Intelligence COURSE OUTCOMES (COs)

On completion of the course students will be able to

COURSE	COURSE	
COMPONENT		COURSEOUTCOME
CORE THEORY –I	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	 CO1: Demonstrate fundamental understanding of the history of artificial intelligence(AI) and its foundations. Demonstrate awareness and a fundamental understanding of various applications of AI CO2: Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning. CO3: Convert world knowledge into FOPL formula and construct well-crafted prolog programmes of moderate size Apply truth functional propositional Logic(PL) and first order predicate logic (FOPL) to world knowledge CO4: Experience AI development tools such as an Prolog. CO5: Demonstrate an ability to share in discussions of AI, its current scope and limitations, and implications. Explore the current scope, potential, limitations, and implications of intelligent systems.
CORE PRACTICAL- I	PROLOG LAB	 CO1: Understand Formal logic and associated forms of programming. Interpret the logical consequences and validity of formulae using the rules of propositional and predicate logic CO2: Convert world knowledge into FOPL formula and construct well-crafted prolog programmes of moderate size. Apply truth functional propositional Logic(PL) and first order predicate logic (FOPL) to world knowledge CO3: Describe the basic predicates to manipulate list data structure and sorting algorithms using PROLOG programming CO4: Demonstrate Logic Programming Paradigm, Prolog execution models, Prolog's basic and advanced prolog concepts such as LIST, CUT, and Fail using illustrative programming examples. Assess the completeness of Resolution Procedure, Soundness and completeness of Linear Resolution, Unification and Selective Linear Definite Resolution.

CORE THEORY – II	PROBLEM SOLVING USING PYTHON	 CO1: To Understand the principles of Python and acquire skills in programming in python. To develop the emerging applications of relevant field using Python Describe the core syntax and semantics of Python programming language. CO2: To Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow statements. Illustrate the process of structuring the data using lists, dictionaries, tuples and sets. CO3: Discover the need for working with the strings and functions. CO4: Describe the concepts of objects and classes with its features To Able to develop simple turtle graphics programs in Python Understand the usage of Modules and File handling in Python CO5: Understand the usage of packages and Dictionaries
CORE PRACTICAL –II	PYTHON LAB	 CO1: To implement the python programming features in practical applications. To write, test, and debug simple Python programs. CO2: To implement Python programs with conditionals and loops. Use functions for structuring Python programs.Represent compound data using Python lists, tuples, dictionaries , turtles, Files and modules. CO3: Understand the numeric or real life application problems and solve them. Apply a solution clearly and accurately in a program using Python. CO4: Apply the best features available in Python to solve the situational problems.
CORE THEORY-III	JAVA AND DATA STRUCTURE	 CO1: To enable the students to learn the basic concepts of Java programming, learn the history and features of Java Students will be able to develop Java Standalone applications and Applets. CO2: To use class and objects to create applications with the concepts of Inheritance, Polymorphism, and String Arrays.To describe the concepts of method overloading and overriding with finalize() methods CO3: To have an overview of interfaces, packages, process synchronization, multithreading and exceptions, Deadlock situations in Java CO4: To familiarize students with basic data structures and their uses in algorithms, Abstract Data types in List CO5: Choose the appropriate data structure for Modeling a given problem.(Searching, Representation of Trees and Graphs).Usage of Linear and Non Linear data structures with examples

		CO1: Implement linear and non-linear data structure operations.
CORE PRACTICAL –III	DATA STRUCTURES USING JAVA LAB	CO2: Understand the different operations of search trees CO3: Implement graph traversal algorithm
CORE THEORY– IV	RELATIONAL DATABASE MANAGEMENT SYSTEM	 CO1: Describe the concepts of database technologies, Model Entity Relationship with E-R Diagrams and the classification of ER model. CO2: Be familiar with the relational database theory according to Codd's rules, and be able To write relational algebra expressions and calculus for queries. CO3:Designdatabase schema considering normalization and relationships within database And also can summarize the transaction processing mechanisms CO4: Be able to write SQL commands for data definition and data manipulation in query Processing. CO5: Develop triggers, procedures, user defined functions ,packages and design PLSQL Programs.
CORE PRACTICAL –IV	PL/SQL LAB	 CO1: Implement the DDL, DML Commands and Constraints. CO2: Implement queries, sub queries and using aggregate functions to retrieve information from database. CO3: Develop PL/SQL block for exception handling, cursors, packages and triggers. CO4: Design and develop simple database applications.
CORE THEORY-V	OPERATING SYSTEMS	 CO1: To understand the fundamental concepts and role of Operating System. To learn the Process Management and Scheduling Algorithms CO2: To understand the Memory Management policies To gain insight on I/O and File management techniques CO3: Understand the structure and functions of Operating System CO4: Compare the performance of Scheduling Algorithms CO5: Analyze resource management techniques
CORE THEORY-VI	COMPUTER NETWORKS	CO1: To understand the concept of Computer networkCO2: To impart knowledge about networking and inter networking devices

		CO3: Analyze different network models
		CO4: Describe, analyze and compare a number of data link, network and transport layerCO5: Analysing key networking protocols and their hierarchical
		relationship in the conceptual model like TCP/IP and OSI
CORE THEORY-VII	COMPUTER VISION	CO1: To introduce students the fundamentals of image formation; To introduce students the major ideas, methods, and techniques of computer vision and pattern recognition;
		CO2: To develop an appreciation for various issues in the design of computer vision and object recognition systems;
		 CO3: To provide the student with programming experience from implementing computer vision and object recognition applications CO4: Identify basic concepts, terminology, theories, models and methods in the field of computer vision Describe known principles of human visual system CO5: Describe basic methods of computer vision related to multiscale representation, edge detection and detection of other primitives, stereo, motion and object recognition Suggest a design of a computer vision system for a specific problem
		CO1 : Understand What Is A Digital Image and what is Manipulating
CORE PRACTICAL –V	COMPUTER VISION LAB	Image CO2: Understand Manipulating Images One Pixel At a Time, Pixel Transformations, geometric Operations
		CO3: Implement Spatial Operations in Image Processing Implement the Image Gradients and Edge Detection Techniques
		CO4: Implement Extraction of desired features Implement object detection
ELECTIVE THEORY-I	NATURAL LANGUAGE PROCESSING	CO1: To grasp the significance of natural language processing in solving real-world problems To map the appropriate processing technique to a problem and implement the technique
		CO2: To demonstrate required design skills for large collection sets. To appreciate the theoretical formulation of the natural language processing techniques.
		CO3: Describe the fundamental concepts and techniques of natural language processing.
		CO4: Distinguish among the various techniques, taking into account the assumptions, strengths, and weaknesses of each.

		CO5: Use appropriate descriptions, visualizations, and statistics to
		communicate the problems and their solutions.
		applications
		approvidentia
		CO1: To understand the Android with Machine Learning
ELECTIVE THEORY-I	MOBILE APPLICATION DEVELOPMENT FOR MACHINE LEARNING	 CO2: To analyze the Anatomy of an Android Application Context, Activities, Services, Intents CO3:To envisage outcomes automatically without human interference CO4:To learn Machine learning serving mobile application
		will reduce human interference
ELECTIVE THEORY-I	INTRODUCTION TO REINFORCEMENT LEARNING	CO1: To understand the statistical learning techniques where an agent explicitly takes actions and interacts with the world.
		CO2: To analyze the basic exploration methods and the exploration/exploitation tradeoff
		CO3: To understand value functions, as a general-purpose tool for optimal decision- making
		CO4: To Know how to implement dynamic programming as an efficient solution approach to an industrial control problem.
		CO5: To determine be able to start using RL for real problems
ELECTIVE PRACTICAL –I	NATURAL LANGUAGE PROCESSING LAB	CO1: To understand the concepts of morphology, syntax, semantics, discourse & pragmatics of natural language.
		CO2: To analyze the understanding of the relationship between NLP and statistics & machine learning.
		CO3: To familiarize various NLP software libraries and datasets publicly available.
		CO4: To develop systems for various NLP problems namely, spelling correction, morphological analysis, parts-of-speech tagging, parsing and semantic analysis
ELECTIVE PRACTICAL –I	MOBILE	CO1: To develop components and different Layout for mobile
	APPLICATION DEVELOPMENT FOR MACHINE	application development framework for android CO2: To develop Simple GUI application with the Use of Built in components and widgets.

	LEARNING - LAB	CO3: To create databases to store application data locally
		CO4: To Test and Show the results on emulators or on physical handheld devices
ELECTIVE PRACTICAL –I	REINFORCEMENT LEARNING - LAB	 CO1: To develop the knowledge of basic and advanced reinforcement learning techniques. CO2: To develop the Identification of suitable learning tasks to which these learning techniques can be applied. CO3: To analyze the some of the current limitations of reinforcement learning techniques. CO4: To determine the Formulation of decision problems, set up and run computational experiments, evaluation of results from experiments.
CORE THEORY-VIII	CLOUD COMPUTING	 CO1: To understand the concepts in Cloud Computing and its Security CO2: To understand the evolving computer model, cloud computing. CO3: To introduce the various levels of services that can be achieved by cloud. CO4: To explain and apply levels of services of Cloud CO5: To describe the security aspects in the cloud.
CORE THEORY-IX	INTERNET OF THINGS	 CO1: To understand the concepts of Internet of Things and the application of IoT. CO2: To determine the Market Perspective of IoT. CO3: To Understand the vision of IoT from a global context and use of Devices, Gateways and Data Management in IoT. CO4: To design IoT applications in different domain and be able to analyze their performance CO5: To implement basic IoT applications on embedded platforms.
CORE THEORY-X	MACHINE LEARNING	 CO1: To understand the To understand basic concepts of machine learning and its applications CO2: To determine the different machine learning algorithm techniques to evaluate models generated from data. CO3: To discover how to build machine learning algorithms, prepare data, and use different techniques using Python CO4: To apply appropriate data sets to the Machine Learning algorithms.

		CO5: To implement the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.
CORE PRACTICAL –VI	MACHINE LEARNING LAB	 CO1: To design and evaluate the unsupervised models through python in built functions. CO2: To evaluate the machine learning model algorithms by python programming. CO3: To design and apply various reinforcement algorithms to solve real time complex problems. CO4: To design and develop the code for the recommended system using Natural Language processing.
ELECTIVE THEORY-II	INFORMATION SECURITY	 CO1: To acquire knowledge of cryptography and network security CO2: To test and evaluate security in systems and networks CO3: To use methods for planning and designing secure systems CO4: To apply techniques and tools for secure system deployment and operation CO5: To Perform continuous testing, assessment and updating of system security
ELECTIVE THEORY-II	NETWORK SECURITY	 CO1: To Understand security issues related to networking vulnerabilities, firewalls, intrusion detection systems CO2: To Identify infrastructure components including devices, topologies, protocols, systems software, management and security CO3: To Design and develop solutions for technical issues related to networking and security problems. CO4: To apply footprinting, scanning, enumeration and similar techniques to discover network and system vulnerabilities CO5: To analyze performance of network security applications, IPSec, Firewall, IDS, Web security, Email security, Malicious software etc.
ELECTIVE THEORY-II	BLOCK CHAIN TECHNOLOGY	 CO1: To understand the concepts of block chain technology CO2: To understand the consensus and hyper ledger fabric in block chain technology. CO3: To state the basic concepts of block chain CO4: To paraphrase the list of consensus and Demonstrate and Interpret working of Hyper ledger Fabric CO5: To implement SDK composer tool and explain the Digital identity for government