
 International Journal of Multidisciplinary Research in Arts, Science & Commerce

(IJMRASC) ISSN Online: 2583-018X

Vol. 4(1), March 2024, pp. 118-123

118
© 2024, IJMRASC, https://www.sdnbvc.edu.in/ijmrasc/

This work is licensed under a Creative Commons Attribution 4.0 International License

COMPARATIVE STUDY OF STATIC RESILIENCE PATTERNS

OVER DYNAMICALLY MODIFIED RESILIENCE PATTERNS

E. Punithavathy
1
, Dr. N. Priya

2

1
Department of Computer Applications,

Madras Christian College, Chennai, India

2
Associate Professor, Research Department of Computer Science,

Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women, Chennai, India

ABSTRACT

Resilience is the most important feature of any cloud application that is hosted in distributed systems.

This paper presents an analysis of static circuit breakers over the dynamically modified retry and auto

retry circuit breaker using a cloud application, developed using microservice architecture. The execution

results prove that the dynamically modified circuit breaker performs in a better way when compared to

static circuit breaker and dynamic retry pattern at transient failure cases that leads to improved

availability of the microservice application hosted in distributed systems.

INTRODUCTION

Cloud computing has widened its scope due to its usage and benefits obtained from hosting the

applications economically and resourcefully. Such cloud applications have increasing demands to satisfy

the cloud native applications[1]. To meet these demands, an application architecture has to be focussed

upon, how to increase their availability, performance, scalability and other aspects. Nowadays,

Microservice, an application architecture has become popular in meeting these demands. Its independent

characteristics such as deployment, mixed coding style , loose coupling with other services are the

reasons towards the success of this architecture. Such microservice architecture is in a growing phase,

with respect to the resilience patterns[2].

 The Resilience patterns can be described as the ability of application modules or services to cope

with failures. It decides the way a service or module must behave at transient failure cases. These patterns

can be applied only to transient failure conditions, since it is the temporary failure which happens due to

the specific service down, a network problem etc[3].All these failure cases are recoverable in nature. At

 International Journal of Multidisciplinary Research in Arts, Science & Commerce

(IJMRASC) ISSN Online: 2583-018X

Vol. 4(1), March 2024, pp. 118-123

119
© 2024, IJMRASC, https://www.sdnbvc.edu.in/ijmrasc/

This work is licensed under a Creative Commons Attribution 4.0 International License

the due course of failure, in order to protect the remaining services from getting affected, these patterns

come into the rescue.

 Whenever a client's request has some problem in reaching the specific service, it might take more

than the longer duration as expected This will further lead to the request overload. It may bring the entire

application down, if it has not been treated in a timely manner. This condition results in cascading of

failures(failure caused by other failures). To overcome all these features, resilience patterns are used.

 The patterns that are available under the resilience are circuit breaker, retry, timeout, bulkhead,

ratelimiter etc. Out of which the circuit breaker and retry pattern was the widely used one. They are added

to the application service properties, through their manual parameters. Based on these values the services

are made to react at times of failures. The retry pattern is one of the oldest and widely used patterns in the

network[4].

a) Static Circuit Breaker

 One of the widely used patterns for safeguarding the application services from transient failures.

They perform in three states and are similar to the electronic circuit used in electrical devices[5]. When

they encounter any failure, it redirects the clients request to fallback instead of specified service. By

redirecting the requests, they make some time for the services to recover, or the network issues to get

rectified. It works like a cycle, during closed state- they receive successful requests, open state- waiting

time or recovering time , half-open- check for recovered services[5].

Fig1: Static Circuit Breaker Diagram Process Flow[6]

 International Journal of Multidisciplinary Research in Arts, Science & Commerce

(IJMRASC) ISSN Online: 2583-018X

Vol. 4(1), March 2024, pp. 118-123

120
© 2024, IJMRASC, https://www.sdnbvc.edu.in/ijmrasc/

This work is licensed under a Creative Commons Attribution 4.0 International License

b) Retry

 One of the oldest and simplest used patterns. The main parameters of this pattern are

retry_attempt, base_waiting time, timeout of a request. By default, only static values of developers, given

by developers. In dynamic retry, based on the request time value the retry attempts and the base waiting

time was determined. After the specified number of attempts, the values are made to reset.[9]

Fig2: Retry pattern Process flow[8]

c) Auto Retry Circuit Breaker

 This pattern is the modified version of a static circuit breaker, where the input is determined

based on the response time of each request. The main difference between ARCB and static circuit breaker

is, the three states such as closed open and half-open are reduced into two states such as open and closed.

Similar to dynamic retry the waiting time in open state is determined using the response time obtained

from the application programming interface[8].

Fig 3. Auto Retry Circuit Breaker.[8]

 International Journal of Multidisciplinary Research in Arts, Science & Commerce

(IJMRASC) ISSN Online: 2583-018X

Vol. 4(1), March 2024, pp. 118-123

121
© 2024, IJMRASC, https://www.sdnbvc.edu.in/ijmrasc/

This work is licensed under a Creative Commons Attribution 4.0 International License

METHODOLOGY

This study focuses on the behavioral patterns of these applications, at transient failure cases or

recoverable failure cases. Out of these three patterns, a static circuit breaker is the pattern with manual

configurations. The value must be set by the developers, without the knowledge of failures. The other two

patterns dynamic retry and auto circuit breaker works well, with response time as the only input.

All these resilience patterns were incorporated in microservice based applications using the IDE

intellij idea and Visual studio. The programming languages used for developing the applications are Java,

ASP .Net. The Resilience framework and Polly libraries were added to include the basic configuration

properties. For generating API requests, the POSTMAN tool is used, apart from passing the get method, it

also receives the response time along with the response.

RESULTS

Here the comparative study is done based on the response time obtained from Application

Programming Interface named Postman. Responses were recorded based on these static circuit breakers

and dynamically modified retry and autoretry circuit breakers.

Table 1: Comparison of request execution at failures

Request Dynamic Retry[9] Static Circuit

Breaker[7]

Auto Retry Circuit

Breaker[8]

10 24 112 55

20 30 109 50

30 25 17 13

40 60 68 10

50 29 39 18

60 39 65 39

70 45 7 35

80 32 112 11

90 65 14 40

100 20 125 11

 International Journal of Multidisciplinary Research in Arts, Science & Commerce

(IJMRASC) ISSN Online: 2583-018X

Vol. 4(1), March 2024, pp. 118-123

122
© 2024, IJMRASC, https://www.sdnbvc.edu.in/ijmrasc/

This work is licensed under a Creative Commons Attribution 4.0 International License

The average time taken by dynamic retry=36.9ms

The average time taken by circuit breaker=66.8ms

The average time taken by auto retry circuit breaker=28.2ms

The Table 1 data proves that when compared with static and dynamic patterns, the dynamically

calculated resilience pattern performs well at unexpected cases of failures. Without affecting any services,

they make the application perform well by using these dynamic patterns of retry and circuit breaker. The

only drawback with the dynamic retry pattern is, its value is made to reset, when they reach the request

limit. By comparing all the patterns, it is proved that the auto retry circuit breaker performs well with

minimum execution time.

Fig 4: Comparison of execution time of dynamic retry, static circuit breaker and Auto Retry circuit

breaker

 International Journal of Multidisciplinary Research in Arts, Science & Commerce

(IJMRASC) ISSN Online: 2583-018X

Vol. 4(1), March 2024, pp. 118-123

123
© 2024, IJMRASC, https://www.sdnbvc.edu.in/ijmrasc/

This work is licensed under a Creative Commons Attribution 4.0 International License

CONCLUSION

 The cloud systems achieve resilience by using these patterns. Standardization has not been done,

due to its behavioral changes caused by different types of failures. Moreover, the pattern that is

implemented for distributed systems cannot satisfy the needs, if it is static. And hence the dynamically

modified patterns , can perform well since based on the failure nature . This factor results in better

availability factor of these cloud systems.

REFERENCES

1. Khan, Habib Ullah, Farhad Ali, and Shah Nazir. "Systematic analysis of software development in cloud

computing perceptions." Journal of Software: Evolution and Process 36.2 (2024): e2485.

2. Cerny, Tomas, et al. "On code analysis opportunities and challenges for enterprise systems and

microservices." IEEE access 8 (2020): 159449-159470.

3. Silva, Marco António Rodrigues Oliveira. Improving the resilience of microservices-based applications.

Diss. Universidade do Minho (Portugal), 2021.

4. Rahman, Mohammad Imranur. Analysis of Microservice Coupling Measures. MS thesis. 2022.

5. do Nascimento, Helisson Luiz, et al. "Towards a Resilient Spatial Data Infrastructure." (2020).

6. https://commons.wikimedia.org/wiki/File:Circuit_breaker_pattern_state_diagram.svg

7. Punithavathy Ellappan, Priya N,” Cloud based Scalable Resiliency Pattern using PRISM”, International

Journal of Cloud Computing, doi:10.1504/IJCC.2024.10058869(Forth Coming article)

8. E. Punithavathy, N. Priya, “ Auto retry Circuit breaker for Performance enhanced microservice

applications”, International Journal of Electrical and Computer Engineering(IJECE),Vol 14, No 2, April

2024, ISSN:2088-8708, Doi: 10.11591/ijece.v14i2.pp2274-2281.

9. E.Punithavathy, N.Priya “Performance of dynamic retry over static towards Resilience Nature”, Indian

Journal of Science and Technology(Forth coming Issue).

